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Structure of a liquid crystalline fluid around a macroparticle: Density functional theory
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The structure of a molecular liquid, in both the nematic liquid crystalline and isotropic phases, around a
cylindrical macroparticle, is studied using density functional theory. In the nematic phase the structure of the
fluid is highly anisotropic with respect to the director, in agreement with results from simulation and phenom-
enological theories. On going into the isotropic phase the structure becomes rotationally invariant around the

macroparticle with an oriented layer at the surface.
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I. INTRODUCTION

Solid particles, both spherical and nonspherical, dispersed
in a liquid crystal (LC) host comprise an interesting class of
novel materials [1,2]. In orientationally ordered phases of the
host, the introduction of solid particles deforms the director
field, leading to long-range interactions between the particles
and effects such as chaining or the formation of soft solids.
Colloidal dispersions in liquid crystals have a wide range of
applications [3] and have recently attracted a great deal of
interest [4]. Understanding the behavior of a LC fluid around
solid particles is also important in applications such as
biosensors [5] and some display devices [6].

Experimental techniques such as atomic force microscopy
or confocal microscopy may be used to study LC-colloid
dispersions; simulations and theory have also been applied.
Simulations have been used to study the ordering of LC mol-
ecules around one [7,8] or two macroparticles [9] and LC
dispersions in confined geometries [10]. Phenomenological
theories such as Landau—de Gennes [11-14] or Frank elastic
[15,16] theory have also been used. These approaches, how-
ever, have their limitations: simulation is computationally
expensive, while the aforementioned phenomenological
theories require, often poorly known, parameters and are in-
capable of accounting for spatial variation in the density
(and, in the case of elastic theory, variation in the order
parameter).

One popular theoretical method that may be applied to
this type of problem is density functional theory (DFT) [17].
Unlike Landau—de Gennes or elastic theory, this is capable of
accounting for spatial variation in the density and order pa-
rameter and, in the form used here, requires knowledge only
of the interaction potential between the molecules in the
fluid. In this case DFT at the level of the Onsager second
virial approximation [18] is applied to the case of a single,
infinitely long, cylindrical macroparticle in a LC host. As the
system is homogeneous along the length of the cylinder, two
dimensions are sufficient to represent the spatial dependence
of the density.

II. THEORY

For a system of uniaxial molecules the grand potential can
be written as [19]
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BQLp(r.u)] = BFid p(r.u)] + BFe [ p(r.u)]
+,3f dr dulVey(r,u) — ulp(ru), (1)

where p(r,u) is the position- and orientation-dependent
single-particle density, V. (r,u) is the external potential, u
is the chemical potential, and B=1/kgT. Fi p(r,u)] and
F.[p(r,u)] are the ideal and excess free energies, respec-
tively. r is the position vector, and u is the orientation vector.
The ideal free energy is given by

BFidlp(ru)]= f dr dup(r.u){ln p(r,u) -1} (2)

The exact form of the excess free energy is generally un-
known. Here we employ the Onsager approximation [18]

1
BF [ p(r.u)]=- > f drdrydu,duyf(rip,u,,u,)

XP(”b”l)P("Z’uz)a (3)

where f(ri,,u;,uy)=exp{~BV(r;,,u,,u,)}—1, the Mayer
function, r,=r;—r,, and V(r,,u,,u,) is the molecular pair
interaction potential. The liquid crystal here is modeled as a
fluid of prolate hard ellipsoids of elongation e=a/b=5; a is
the length of the symmetry, or major, axis and we will use
the minor axis b=1 as a unit of length. When two molecules
overlap, V=% and f=-1; for a nonoverlapping pair, V=0 and
f=0. The approximation of Eq. (3) corresponds to truncating
the virial expansion after the pair term. While Onsager
theory is exact only in the limit of infinite elongation, it has
been used to study the anchoring of ellipsoids of this elon-
gation near solid substrates [20,21] and has been found to
give results in qualitative agreement with simulation.

The external potential, representing a single cylindrical
macroparticle of radius R oriented along the y axis, is given
by
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Vext(r’u)
= Veu(s,u)
g
1
EVo[tanh(b/w) — tanh(— b/w)], s—R<-b,
= 4 1 R-s
—V,| tanh| —— | —tanh(- b/w) |, |s—R|<b,
2 w
\0, s—R>Db,
(4)

where s=(x,z), s=|s|, V,=50kzT, and w=>b/5. This repre-
sents a sharply varying repulsive potential acting on the el-
lipsoid centers of mass. It excludes the molecules from the
cylinder and gives rise to homeotropic (normal) anchoring at
the surface.

As before [22-25] the angularly dependent functions are
expanded in a set of spherical harmonics and the assumption
of translational invariance along y allows us to write the
coefficients as functions of s:

In p(r,u) = ; Bem($)Y (@), (5a)
plr,u) = EE Pen($)Y p,,(w), (5b)
Ve(r,u) = ; Ven($)Y g(u). (5¢)

Note the complex conjugate in the density expansion. The
Mayer function is expanded as [24]

fripupu) = 2 feolr)®e o lFrouu),  (6)
0.0

where rj,=|r o], #12=r 2/ 715, and (I)M;z( is a rotational invari-
ant [26]. Inserting these expressions into the grand potential
and integrating over angles and the y direction gives

Q , —
M - f dsz pfm(s)[ﬁfm(s) - \/477-(1 + BM)510

{,m

+ vim(s)] + J dsds,

XE £61m1€2mz(s12)p€1ml(s])p€2m2(s2)- (7)
Cym
)

Here L is the box length in the y direction (we assume peri-
odicity). The quantities Ly, ¢,m,(512) come from integrating
the Mayer function and are the spherical harmonic coeffi-
cients of the excluded length (in the y direction) of two mol-
ecules with a separation vector s;,=s;—s, in the xz plane,
treated as a function of the molecular orientations. As the last
term in Eq. (7) is a convolution, it is most conveniently
evaluated in reciprocal space. If pj,(k) is the two-
dimensional Fourier transform of p,,,(s), then this term may
be written
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TABLE 1. Details of systems studied. R is the macroparticle
radius, L, is the box length in the x direction (with L,=L,), n, is the
number of grid points in the x direction, and Jk, is the grid spacing
in k space.

R/b L./b n, Sk /b1
5 40 200 /20
7.5 60 300 /30
10 60 300 /30
15 80 400 /40
20 100 500 /50
2 2 ’Cflml(fzmz(k)p(lml(k)p{’zmz(k)’ (8)
k Cym
Comy
where Ly, ¢,m,(k) is the Fourier transform of Eglmlezmz(slz).

In order to find the equilibrium density the functions are
tabulated on a regular grid in the xz plane; the grid spacing is
ox=06z=0.2b, the molecular length corresponding to 25 grid
points. The grand potential is then minimized with respect to
the p,,(s) coefficients at each grid point using the conjugate
gradient method [27]. When required, the coefficients pg,,(s)
are calculated through Eq. (5), with angular integrations per-
formed using Lebedev quadrature [28,29]. The systems stud-
ied in this work were all square boxes (L,=L.) with L, rang-
ing from 40b (200 grid points) to 10056 (500 grid points).
Table I summarizes the parameters of the systems discussed
in detail in the next section.

Once the equilibrium density coefficients pg,(s) have
been determined, the number density p(s) around the
macroparticle may be found from

ps) = f dup(s.u) = \4py(s). )

The orientational ordering is described by the order tensor
Q,(s), which is found from p(s,u) by

3 1
Qaﬁ(s) = 5 J dup(ssu)ua(s)uﬁ(s) - 5501,8’ a’ﬂ:x»y»2~

(10)

The spatially varying order parameter S(s) is given by the
largest eigenvalue of Q,4(s) and the director n(s) by the
eigenvector associated with S(s). The difference between the
remaining two eigenvalues of Q,4(s) gives the biaxiality
a(s)=[S,(s)-S5(s)]/3.

III. RESULTS
A. Structure in the nematic phase

First we examine the fluid structure around the cylindrical
particle in a nematic fluid, at chemical potential ©=38.0.
The density distributions around cylinders of radius
5<R/b=<20 are shown in Fig. 1. For all R the density
is largest at the surface but then decays away with almost
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FIG. 1. (Color online) Density maps around a cylindrical macroparticle at #=8.0 (nematic phase). Cylinder radius R/b: (a) 5.0, (b) 7.5,
(c) 10.0, (d) 15.0, and (e) 20.0. Dark colors show areas of low p(s), light colors high p(s).

periodic variation, similar to that seen for a nematic-planar
wall interface. Farther from the cylinder this distortion in
the density becomes highly anisotropic. Parallel to the
director the modulations in the density are stronger than in
the perpendicular direction. This weakening perpendicular
to the director is due to the partial melting of the nematic
in the defect regions [30] and is most noticeable for the

smallest radius R/b=5 [Fig. 1(a)]. In this case, there is
almost no density modulation perpendicular to the director,
causing the density map to show chevron-like structures,
with the chevron tips pointing along the director away
from the axis of the cylinder. For larger radii, the density
variation perpendicular to the director is stronger, but shorter
ranged, than in the direction parallel to the director. In
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FIG. 2. (Color online) Order parameter maps around a cylindrical macroparticle at ©=38.0 (nematic phase). Cylinder radius R/b: (a) 5.0,
(b) 7.5, (c) 10.0, (d) 15.0, and (e) 20.0. Dark colors show areas of low S(s), light colors high S(s). Solid lines show the orientation of the local

director n(s).

comparison to simulation of a system with e=3 [30], the
density variation seems to be shorter ranged. While this may
be due to differences in the models, studies of the nematic-
wall interface using Onsager and related theories [20,25] also
gave density profiles that have generally weaker structure
than comparable simulations.

Maps of the orientational order parameter around the cy-
lindrical particles are shown in Fig. 2. As for the density
maps, the variation in the order parameter is highly aniso-
tropic. For R/b=35, along the director, there are lobes of high
order along the top and bottom of the cylinder. In the direc-
tion perpendicular to the director there are two regions of
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FIG. 3. (a) Density profiles p(s)b>, (b) order parameter profiles S(s), and (c) biaxiality a(s) profiles around a cylindrical macroparticle at
©=8.0 (nematic phase). Solid lines: in the direction parallel to the director. Dashed lines: in the direction perpendicular to the director.
Results are shown for cylinder radius R/b=5.0 and, displaced successively upwards by 0.1 units for clarity, R/b=7.5, 10.0, 15.0, 20.0. In (a)

and (b) the dotted lines show the bulk values for p and S.

drastically reduced order, corresponding to defects in the
liquid. As R increases the lobes of increased order tend to
wrap around the cylinder and the defects move away from
the surface, in agreement with simulation [30] and phenom-
enological theory [13,31,32]. While the positions of the de-
fects are in qualitative agreement with previous results, in
the present case the defects are significantly smaller than
those seen previously, suggesting that for molecules of this
elongation more sophisticated methods such as weighted
density approximations [33] or fundamental measure theory
[34] are necessary to examine the structure within the topo-
logical defect. Detailed comparisons with simulation will
appear in a later publication.

Also shown in Fig. 2 is the director orientation n(s)
around the macroparticle. At large distances from the cylin-
der the n(s) lies along the z axis. Close to the particle the
director becomes highly distorted. Along the z axis and at the
defects, n(s) is normal to the particle surface. At other points
on the particle surface, n(s) points away from the surface
normal, appearing to graze the surface of the macroparticle.
This behavior is different from that seen in simulation [30]
and from elastic theory in the case of strong anchoring [31],
suggesting that the anchoring around the macroparticle is
weaker than in previous studies. Apart from in the vicinity of
the defects, n(s) is a smoothly varying function of s.

In order to gain more insight, the density, order parameter
and biaxiality profiles parallel [p)(s), S|(s), and ¢(s)] and
perpendicular [p,(s), S,(s), and «a,(s)] to the director
(through the defects) are shown in Fig. 3. The pj(s) curves
show similar structure as R increases, with a peak at the
cylinder surface s=R, a second peak about 50 (one molecu-
lar length) from the surface, and some decaying oscillations
into the bulk. This is similar to the behavior seen for a nem-
atic fluid near a wall with homeotropic alignment [22,25].

The size of the peak at contact increases with R at small R.
p,(s) also has a peak at contact. For smaller cylinders,
p1(R)<p|(R). As R increases the difference between the two
heights decreases. Further from contact p, (s) has a second-
ary peak. For the R/b=5 cylinder this peak is approximately
2.5b from the surface with p, (s) tending towards the bulk
value farther out. For larger R, the secondary peak moves
out. Beyond this peak p, (s) behaves almost identically for
all R.

As with py(s), the Sj(s) profile is similar to the order pa-
rameter profile for a nematic-homeotropic wall interface,
with a maximum at contact and decaying oscillations. S, (r)
shows a minimum near contact. This corresponds to the de-
fect seen in the order parameter maps (Fig. 2). In agreement
with the order parameter maps, the distance between the
minimum and the surface increases with R. This is mirrored
in the biaxiality profiles where there is a marked peak in
a (s) at approximately the same position as the minima in
S 1 (s). By contrast ¢(s) is approximately O for all s. Shown
in Fig. 4 is the position of the minimum s,,;, as a function of
radius R. For spherical macroparticles with both Saturn ring
and satellite defects, the distance between the surface and the
defect varies linearly with particle size [8]. In the present
case s, increases with R, and at large R the increase is
approximately linear.

B. Structure in the isotropic phase and around
the nematic-isotropic transition

Shown in Figs. 1(d), 2(d), 5, and 6 are the density and
order parameter maps for a cylindrical macroparticle with
R/b=15 in both the nematic and isotropic phases. The bulk
isotropic-nematic transition occurs at uy;=7.3675. In the
nematic phase, at this value of u, the density and order
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FIG. 4. Defect position (s,,;,—R) near cylindrical macroparticles
at #=8.0 (nematic phase) as a function of radius R. The dashed line
shows the line of best fit, omitting the point at R/b=5.

parameter maps are similar to those seen for w=8, though
the variations in the density and order parameter are less
pronounced. Also the defects either side of the cylinder with
wn=7.3675 are both larger and significantly farther from
the surface (s.,j,—R=~2.5b) than for the higher chemical
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potential. In the isotropic phase, both the density and order
parameter variation become almost completely symmetrical,
reflecting the loss of a preferred direction. In this phase, far
from the cylinder, the order parameter S— 0, while both p
and S have maxima at the surface. This suggests that the
surface is wet by the nematic and this gives rise to short-
range interactions between particles dispersed in a liquid
crystal host even in the isotropic phase [11,35]. The width of
this layer increases with w, and it also increases as the cyl-
inder radius increases. However, a detailed investigation of
surface phase behavior and interparticle interactions in this
model awaits further study.

IV. CONCLUSIONS

In this paper the structure of a liquid of hard ellipsoids of
elongation e=5, around a cylindrical macroparticle, in both
the nematic and isotropic phases, was studied using density
functional theory within the Onsager approximation. The re-
sulting density and order parameter maps were consistent
with previous theoretical and simulation work. On going
from the nematic to isotropic phase, the structure of the

T
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FIG. 5. (Color online) Density maps for fluid around cylindrical macroparticle of radius R/b=15 with (a) x=7.3675 [nematic phase, at
the nematic-isotropic (NI) transition], (b) u=7.3675 (isotropic phase, at the NI transition), and (c) u=>5.0 (isotropic phase). Dark colors show

low p(s), light colors high p(s).
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FIG. 6. (Color online) Order parameter maps for fluid around cylindrical macroparticle of radius R/b=15 with (a) u=7.3675 (nematic
phase, at the NI transition), (b) u=7.3675 (isotropic phase, at the NI transition), and (c) u=5.0 (isotropic phase). Dark colors show areas of

low S(s), light colors high S(s).

surrounding fluid becomes rotationally invariant about the
cylinder, with what appears to be a nematic wetting layer at
the particle surface.

The present study is preliminary: investigation of the
sensitivity of the results to the resolution of the real-space
and reciprocal-space grids must still be carried out. Nonethe-
less, the results are very promising. Despite its simplicity,
this method provides results that are generally in agreement
with simulation and phenomenological theory. The only
major deficiency is that the defects are smaller than would be
expected from simulations of a similar system with e=3.
Using more sophisticated density functionals or ellipsoids
with longer elongations (where Onsager theory is more
accurate) would hopefully give a better description of the
defect. Detailed comparisons with simulation will be

described elsewhere. Modifications to the macroparticle-fluid
interactions would allow a study of different anchoring
strengths and hopefully resolve the mismatch between the
simulation and theory director configurations. Extension of
this work to systems containing two (or more) macropar-
ticles and with macroparticles in inhomogeneous environ-
ments such as near solid substrates would also be valuable.
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